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Diffusion in Three-Dimensional Random Systems 
at Their Percolation Thresholds 
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Extensive Monte Carlo simulations of the ant-in-the-labyrinth problem on 
random L * L * L simple cubic lattices are performed, for L up to 960 on a 
CRAY-YMP supercomputer. The exponent k for the rms displacement r with t 
in r ~  t k is found to be k =0.190_+0.003. As a second approach, large percola- 
tion clusters with chemical shells up to 300 are generated on a simple cubic 
lattice at criticality. The diffusion equation is then solved by using the exact 
enumeration technique. The corresponding critical exponent d w is found to be 
1/dw = 0.250 -- 0.003. 

KEY WORDS:  Percolation; anomalous diffusion; Alexander-Orbach rule; 
vector computer. 

Diffusion in random percolating systems, known as the ant-in-the-labyrinth 
problem after de Gennes, ~ has attracted much attention in the recent 
years. According to the usual scaling theory of percolation, ~2) the descrip- 
tion of such dynamical aspects as, e.g., the conductivity ( ~  diffusion con- 
stant) in random resistors networks requires the knowledge of a dynamic 
critical exponent, which, in general, cannot be related exactly to the static 
critical exponents. 
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Alexander and Orbach (3~ made the interesting observation, based on 
empirical data, that a certain combination of static and dynamic exponents 
(see below), called the fracton or spectral dimension, is about 4/3 for 
dimensions d >  1. In order to test this conjecture, extensive numerical and 
analytical work was initiated. High-accuracy Monte Carlo simulations 
found deviations by 2-3% for two dimensions, (4) whereas series 
expansions (5) were consistent with the AO rule. In high dimensions, it 
violates an e expansion (6~ around d =  6. For  the physically most relevant 
dimensionality d =  3, however, the situation is more controversial. While 
previous Monte Carlo studies gave results in agreement with the AO 
rule, ~7) with a possible exception of ref. 8, in a more recent numerical work 
an appreciable deviation from this rule was found. O) In that work, large 
systems of up to 4563 sites were considered. 

In this work, we attempt once more to improve the numerical 
accuracy of the Monte Carlo simulations by studying much larger systems 
(up to 9603 sites), thus reducing considerably the finite-size effects. We 
consider two different methods: The first one is the ant-in-the-labyrinth 
method,, i.e., the diffusion of noninteracting particles on the occupied sites 
of a random simple cubic lattice of linear length L at the percolation 
threshold Pc =0.3116 (averaged over all cluster sizes). For  each of the 
100-500 lattices, we used 500-10000 random walkers (ants) and averaged 
over all of them, independently of whether they started on the infinite per- 
colation cluster or on a finite cluster. In this case the rms displacement r 
becomes anomalous (1~ at the percolation threshold and scales with time t 
asymptotically as 

r ~ t  k ( la)  

The exponent k can be written in terms of static and dynamic critical 
exponents as 

2k = (2 - fl/v)/(2 + (# - fl)/v] ( lb)  

where v is the correlation length exponent, fi the exponent for the volume 
fraction of the infinite network, and # the conductivity exponent. (2~ The 
fracton or spectral dimension d, of the incipient infinite cluster is related to 
the exponent k via 

4 k  = ds(2 - f l / v ) / ( d -  f l /v)  ( lc)  

Alexander and Orbach (3~ conjectured that d s = 4/3 in all dimensions d >  1, 
i.e., it is superuniversal. If this rule holds, then k in (lc) is given simply by 

3k = (2 - f l / v ) / ( d -  f l /v)  ( ld)  
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The second method uses the exact enumeration technique, ~1~ with 
which we study diffusion on the incipient infinite percolation cluster alone. 
Thus we generate a large percolation cluster at the critical concentration Pc. 
using the Leath algorithm (11) and solve the diffusion equation by exact 
enumeration. This is equivalent to an average over al l  possible random 
walks. Finally, a configurational average over 2000 cluster realizations is 
performed. In the exact enumeration method one calculates the probability 
P( i ,  t)  of the walker to be at site i at time t, by knowing the probability to 
be at site i and at each of its nearest-neighbor sites at time t -  1. In our 
case the required transition probabilities to make a time step are just one 
or zero, depending on whether the neighbor site belongs to the cluster or 
not, respectively, and are appropriately normalized. In both methods we 
use the diffusion rule, commonly known as the blind-ant rule, in which the 
walker has a finite probability to remain in its site i at time t. 

Diffusion on the incipient infinite percolation cluster is anomalous ~1~ 
such that the rms displacement r behaves asymptotically with time t as 

r ~ t 1/a~' (2a) 

where the exponent d,. is the so-called fractal dimension of the random 
walk and is given by 

dw = 2 + (t~ - f l ) / v  (2b) 

Using ( lb)  and (2b), we can relate dw to k as 

d w k  = 1 - ~ / 2 v  _~ 0.76 (2c) 

which provides us with a consistency relation between the two exponents 
to be measured independently in the simulations. Again, if the AO rule 
holds, one has 

dw = 3 ( d -  13/v)/2 (2d) 

Both methods were implemented on the CRAY-YMP at the 
H6chstleistungs-Rechenzentrum of the KFA at Jtilich. The twc~ problems 
can be vectorized using standard F O R T R A N  language; no assembler 
statements as in refs. 7 and 9 were needed. For the first method, in order 
to simulate large systems we stored each site in one bit and to speed up the 
algorithm we stored the three-particle coordinates on a single 64-bit word. 
With the latter improvement  about  20% of computing time was saved. We 
needed about  0.29#sec/step per ant, which is a bit higher than the 
0.22 #sec/step per ant obtained on the CDC Cyber 205 in a previous 
work. (9) This speed, however, remained constant, in contrast to the perfor- 
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mance drop observed on the Cyber 205 for larger system sizes. (9) For the 
lattice occupation we needed about  0.05ktsec/site (compared with 
0.06 #sec/site on a Cyber 205). To reach sizes of L = 9 6 0 ,  a 15-Mword 
storage was required. The whole lattice was stored on a one-dimensional 
array, and the same boundary conditions as described in ref. 7 were used. 
For  the second method, the Leath algorithm was not vectorized and 
required about  0.6 #sec/site. To grow a cluster for which the last grown 
sites have reached a chemical distance (1~ /=300 ,  we used 16-Mword 
storage for a lattice of 2403 sites in which each site occupied a single 64-bit 
word. We could create clusters containing up to 90,000 sites and we 
checked that they never touched the boundaries. The later exact enumera- 
tion, however, where most of the computer  time was spent, was more 
efficient and reached about  100 Mflops/sec, or 0.19 ktsec/step, faster than 
the ant-in-the-labyrinth method. For  each method about  22h of CPU time 
was used. 

Let us discuss our results for the first method. We simulated systems 
with linear sizes L =  192, 448, 704, 768, and 960. Usually we considered 
walks up to 214 time steps and averaged over typically 5 x 105 ants on all 
independent lattices together. We observed no clear manifestation of finite- 
size effects, even for L = 192, within that time interval. For L = 704 and 
960, we went up to 219, with averages over a total number of ants of about 
105. Again, no apparent finite-size effects as found in ref. 7 were observed, 
but for L =  192 and 448 we again found the effective exponent k e (see 
below) to increase for long times. For  the most accurate data we restricted 
the walks to 214 steps and averaged over 3.5 x 10 6 ants in total. Most of the 
data were obtained for L =  960 (1.6 x 10 6 ants) and 704 (10 6 ants). As in 
previous works, 7'9 our aim is to find the asymptotic exponent k in (la). 
In Table I we report the averaged values of r(t) for times t = 2  n, 
with 0 ~< n ~< 14. The value for n = 17 is a linear least-square fit of the data 
of r(t) for 15 ~< n ~< 19, obtained with less accuracy for L = 960 and 704. 
In the third column of Table I we include the effective exponents k e = 
d(log r)/d(log t), obtained by calculating the slopes between two successive 
values of r. The data of ke versus 1/r are very similar to the results shown 
in Fig. 1 of ref. 9, and therefore are not plotted here again. Since the data 
of ke versus 1/r show indeed a curvature for smaller r, we assumed ke = 
k +  const ,  r -~ and calculated the root-mean-square deviations as a func- 
tion of Co (a plot of ke versus 1/log t showed a much pronounced curvature 
and was not included in the analysis). This procedure was repeated by suc- 
cessively omitting data for n smaller than a given no. We obtained stable 
results (independent of no) for 7 <~nc <<. 11. In this interval, the lowest rms 
deviation occurred at COrn ~ 1.0, which corresponds to k-~0.19. The error 
bars for k are obtained from those values of Co for which the rms deviation 
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differs by a factor of two from its minimum value at co,,. This gives 
k = 0.19_ 0.01. Since this calculation may overestimate the error bars, we 
analyzed the data in a different way. We calculated new k~ exponents from 
those given in Table I by a linear least-square fit between four successive 
values, r~+3, rn+2, rn+l, and r~. The corresponding intercept of the 
straight line at 1/r = 0 was taken as the new value for k~ at r, +~. These are 
reported in the fourth column of Table I. We observe a constant value 
0.190 + 0.001 over a large interval of distances. This result provides us with 
a much lower error estimate than found above. Thus, for a more realistic 
estimate we take the geometric average of the two error bars, which leads 
t o  

k = 0.190 _ 0.003 (3) 

Table I. Averaged RMS Displacements Traveled by the Diffusing Ants 
and Effective Exponents ke for Times t = 2  n a 

n r k~ k e r 1 /d  .... 1/d,,e 

0 0.5582 - -  - -  0.6203 - -  - -  

i 0.7427 0.4122 - -  0.8289 0.418l - -  

2 0.9670 0.3807 0.2488 1.0885 0.3932 0.2972 

3 1.2326 0.3500 0.2251 1.4077 0.3709 0.2822 

4 1,5449 0.3258 0.2087 1.7961 0.3516 0.2714 

5 1.9051 0.3024 0.1970 2.2646 0.3344 0.2646 

6 2.3177 0.2828 0.1954 2.8276 0.3204 0.2604 

7 2.7915 0.2684 0.1953 3.5030 0.3090 0.2562 

8 3.3347 0.2565 0.1907 4.3095 0.2989 0.2528 

9 3.9558 0.2464 0.1903 5.2703 0.2904 0.2509 

10 4.6615 0.2368 0.1906 6.4142 0.2833 0.2506 
11 5.4712 0.2311 0.1909 7.7744 0.2775 

12. 6.3944 0.2250 0.1899 9.3937 0.2729 

13 7.4452 0.2195 0.1901 
14 8.6492 0.2163 

15 10.001 

16 11.558 - -  

17 13.247 0.2068 
18 15.392 - -  

19 17.745 - -  

The k e were obtained by calculating the slopes between two successive values r ,  i and r,. 

The value for n = 17 is an average over 15 ~< n ~< 19. The fourth column contains values of 
k e obtained'as intercepts of straight lines fitted through four successive r values. The fifth and 

sixth columns display averaged rms displacements obtained by exact enumeration and effec- 
tive exponents 1/d~e, for times t = 2 n, respectively. The exponents 1/d,,~ were obtained by 

calculating the slopes between two successive values r~ i and r,. The seventh column con- 

tains values of 1/dwe calculated as done for ke in the fourth column. The error bars for k e 

and l ids,  e in columns three and six, respectively, are about _+0.003. 
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We can now compare this result with that expected from the AO rule 
(ld). Using accurate values (12) for the ratio /3/v=0.477, we find kAo = 
0.201 + 0.001. Clearly, our value (3) appears to be barely inconsistent with 
this AO rule. Using (lb),  we deduce a new value for the ratio p/v= 
(k - I  - 2)(1 - fl/2v) = 2.48 + 0.07, slightly inconsistent with the recent (13) 
series value 2.31+0.06. Finally, using (2c), we deduce d~ = 4.0 __ 0.07, 
which we proceed to test independently as shown next. 

Using the Leath algorithm, (H) we generated large percolation clusters 
on the simple cubic lattice at criticality. Clusters which have not reached 
a given chemical distance l were rejected, while the growth was stopped 
when they reached I. In order to get some estimate for possible finite- 
size effects, we studied separately clusters for I =  100, 200, and 300. The 
diffusion equation was solved with the exact enumeration technique (1~ 
for up to 212 time steps with averages over 2000 different clusters for each 
value of I. We are interested in the asymptotic value of the exponent dw 
defined in (2a). Following the same procedure discussed above for the first 
method, we calculated the effective slopes dwe from the measured rms dis- 
placements r(t). These results are given in the fifth and sixth columns of 
Table I , 'which contain averages of the rms displacements over the three 
system sizes l. By calculating separately the effective exponents dwe obtained 
for each l, we observed indeed no systematic deviation between the data 
which could be attributed to finite-size effects. Since again a curvature is 
observed in the final data of 1/dwe versus I/r, a linear least-square fit of the 
data was performed. Here we assume 1/dwe = 1/dw + cons t - r  - ~  and apply 
the same procedure discussed above for the first method. I n  this case, 
however, the fit is not successful since a plateau is not obtained as in the 
first method. A linear least-square fit for n >/8 gives 1/dw = 0.251 + 0.009. 
To check the stability of this result, we reanalyzed the data by calculating 
the effective intercepts 1/dwe between four successive r values as described 
above for obtaining k e in the fourth column of Table I. The new effective 
exponents are reported in the seventh column of Table I. They seem to 
approach a straight line for n ~> 9 and extraplate to 0.250 + 0.001, close to 
the above value. Again, as error bars we take the geometric mean, which 
gives 1/dw = 0.250___ 0.003 or 

dw = 4.00 ___ 0.05 (4) 

consistent with (3) through (2c). We can compare this value from that 
expected from the AO rule (2d), which gives dwAo = 3.785 + 0.01. We find 
a clear disagreement between this and our value (4). From series results (13) 
we deduce a value for dw = 3.83 + 0.06 barely consistent with our result (4). 
We can estimate again a value for the ratio #Iv using (2b) and (4). We find 
in excellent agreement with the first method, kt/v = 2.45 + 0.05, which is 
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again slightly larger than the series (13) value 2.31 _+ 0.06. It is worthwhile to 
mention that much information is contained in the probability density 
P(r,  t), obtained as a by-product of the exact enumeration method, which 
we have not discussed here. This function gives the probability to find the 
random walker at time t at a distance r from its starting point. Of current 
interest is the study of the fluctuations of P(r,  t) for fixed r and t through 
the averaged moments <Pq(r, t)> for any real q > 0, as was recently done 
for percolation in two dimensions. {~4) A similar study in three dimensions 
will be reported elsewhere. 

In summary, we have attempted to improve the numerical accuracy of 
the existing Monte Carlo data for the anomalous diffusion exponent k of 
the ant-in-labyrinth problem in three dimensions. This is accomplished by 
studying much larger systems (up to 9603 sites) than in previous works. 
Our estimate for k=0 .190•  appears barely inconsistent with the 
Alexander-Orbach rule k = 0.201 • 0.001, while our value lies between the 
previous 0.20+_0.01 obtained in ref. 7 and 0.175+0.01 in ref. 9. Indepen- 
dently of the above method, we studied diffusion on the incipient infinite 
percolation cluster and solved the diffusion equation by exact enumeration. 
We studied clusters containing up to 300 chemical shells. We obtain dw = 
4.00+_0.05 (or 1/dw = 0 . 2 5 0 •  0.003) for the corresponding anomalous 
diffusion exponent, which deviates somewhat from the AO rule, dw = 
3.785 _ 0.01. This work is possibly the first attempt to implement the exact 
enumeration technique on a 64-bit word vector computer, and clearly 
future work in this direction should be encouraged. The slight deviation 
from the AO rule in three dimensions complements that found in two 
dimensions(4); it contradicts somewhat the series results for two and three 
dimensions, (~3) which agree with the AO rule. This discrepancy remains to 
be understood. 
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